class: center, middle ## IMSE 440 ## Applied Statistical Models in Engineering
## Logistic regression [ISLR book](https://www.statlearning.com): Chapter 4.3 --- # Will a credit card customer default? ``` import pandas as pd df = pd.read_csv('./data/default.csv') df.head() ``` .center[] --- $$\text{default_binary}= \begin{cases} 1, & \text{if } \text{default = Yes,} \\\ 0, & \text{if } \text{default = No.} \end{cases} $$ -- ``` plt.scatter(x='balance', y='default_binary', data=df, s=200, alpha=.1) ```
.center[] --- # Logistic regression $$p(x)=\frac{e^{\beta_0+\beta_1x}}{1+e^{\beta_0+\beta_1x}}$$ $p(x)$: probability of default given that the balance is $x$. --
.center[] --- # Logistic regression $$p(x)=\frac{e^{\beta_0+\beta_1x}}{1+e^{\beta_0+\beta_1x}}$$ ??? $$ \begin{aligned} p(x)&=\frac{e^{\beta_0+\beta_1x}}{1+e^{\beta_0+\beta_1x}} \\\ \\\ \frac{p(x)}{1-p(x)}&=e^{\beta_0+\beta_1x} \\\ \\\ \ln{\frac{p(x)}{1-p(x)}}&=\beta_0+\beta_1x \\\ \end{aligned} $$ The log-odds (or logit) is a linear function of $x$. --- # Interpretation of the slope parameter $\beta_1$ $$\frac{p(x)}{1-p(x)}=e^{\beta_0+\beta_1x}$$ When we increase $x$ by $1$, the odds $$ \begin{aligned} \frac{p(x+1)}{1-p(x+1)}&=e^{\beta_0+\beta_1(x+1)} \\\ &=e^{\beta_1}e^{\beta_0+\beta_1x} \\\ &=e^{\beta_1}\frac{p(x)}{1-p(x)} \end{aligned} $$ increase by a ratio of $e^{\beta_1}$. --- # Interpretation of the slope parameter $\beta_1$ $$\ln{\frac{p(x)}{1-p(x)}}=\beta_0+\beta_1x$$ When we increase $x$ by $1$, the log-odds $$ \begin{aligned} \ln{\frac{p(x+1)}{1-p(x+1)}}&=\beta_0+\beta_1(x+1) \\\ &=\beta_0+\beta_1x+\beta_1\\\ &=\ln{\frac{p(x)}{1-p(x)}}+\beta_1 \end{aligned} $$ increase by $\beta_1$.